# Least Squares for Predicting Continuous Responses

### Dr Rebecca Barter



## Labeled data

Outcome of interest: Healthcare expenses in next year

| Age | Sex | Weight | Diabetes | Healthare<br>expenses |
|-----|-----|--------|----------|-----------------------|
| 54  | Μ   | 132    | Ν        | 844                   |
| 76  | F   | 155    | Y        | 5,467                 |
| 49  | Μ   | 166    | Y        | 8,089                 |
| 39  | F   | 129    | Ν        | 103                   |
| 47  | Μ   | 177    | Ν        | 6,591                 |
| 70  | F   | 192    | Ν        | 4,300                 |



#### Visualizing relationships between response and predictors

Outcome of interest: Healthcare expenses in next year



UTAH

# (New) Unlabeled data

Outcome of interest: Healthcare expenses in next year

| Age | Sex | Weight | Diabetes | Healthcare<br>expenses |
|-----|-----|--------|----------|------------------------|
| 44  | М   | 165    | Ν        | ?                      |
| 69  | F   | 161    | Y        | ?                      |
| 78  | М   | 170    | Ν        | ?                      |
| 66  | Μ   | 191    | Ν        | ?                      |



# Labeled versus Unlabeled data

# Labeled data (Training data)

| Age | Sex | Wt  | Diab | Health<br>exp |
|-----|-----|-----|------|---------------|
| 54  | Μ   | 132 | Ν    | 844           |
| 76  | F   | 155 | Υ    | 5,467         |
| 49  | Μ   | 166 | Υ    | 8,089         |
| 39  | F   | 129 | Ν    | 103           |
| 47  | Μ   | 177 | Ν    | 6,591         |
| 70  | F   | 192 | Ν    | 4,300         |







#### Notes:

LS prediction problems are sometimes called **linear regression** problems LS can only be used to generate predictions of **continuous responses** 

# **Generating predictions from a linear fit**

Consider a simplified linear predictive model:



hlthx =  $b_0 + b_1$  age

UTAI

# **Choosing a linear fit**

There are many possible linear fits to choose from

 $\widehat{\text{hlthx}} = -3500 + 162 \text{ age}$   $\widehat{\text{hlthx}} = -4100 + 149 \text{ age}$   $\widehat{\text{hlthx}} = -4290 + 142 \text{ age}$   $\widehat{\text{hlthx}} = -4400 + 135 \text{ age}$ 





The **LS** fit is the one whose squared distance between the "observed" and "predicted" response is minimized











| Age | Sex | Weight | Diabetes | Predicted<br>Healthcare exp |
|-----|-----|--------|----------|-----------------------------|
| 44  | М   | 165    | N        | 4697                        |
| 69  | F   | 161    | Y        | ?                           |
| 78  | М   | 170    | Ν        | ?                           |
| 66  | М   | 191    | Ν        | ?                           |



| Age | Sex | Weight | Diabetes | Predicted<br>Healthcare exp |
|-----|-----|--------|----------|-----------------------------|
| 44  | М   | 165    | N        | 4697                        |
| 69  | F   | 161    | Y        | 5776                        |
| 78  | М   | 170    | Ν        | ?                           |
| 66  | М   | 191    | Ν        | ?                           |



















# **Evaluating continuous response predictions**

Dr Rebecca Barter



# **Evaluating predictions**

| Age | Sex | Weight | Diabetes | <u>Predicted</u><br>Healthcare exp |
|-----|-----|--------|----------|------------------------------------|
| 44  | М   | 165    | Ν        | 4697                               |
| 69  | F   | 161    | Y        | 5776                               |
| 78  | М   | 170    | Ν        | 3681                               |
| 66  | М   | 191    | Ν        | 6225                               |

How do we know whether these predicted healthcare expense values are accurate?

UTAI

We need to compare them with the *observed* numbers.

But we haven't yet observed the actual numbers for these people...

## Training an algorithm and generating a prediction

#### Labeled data

Age

54

76

49

39

47

70

**Unlabeled data** 

**Prediction** 

UTAH



healthcare expenses = -10,612 - 44 age +1,405 sex +96 weight +3,968 diabetes We need to **evaluate** our predictions using **labeled data** 

# **Evaluating predictions**

We need to evaluate our predictions using labeled data

Labeled data



**Problem:** The algorithm was *"trained"* using these labeled data

The algorithm may be better able to predict these responses than it would for data it was not trained on!

We should evaluate algorithms using data that reflects data we will be applying the algorithm to!



# **Training and testing sets**

Since the only labeled data is usually the data we have, we need to **split** our data into training and testing sets





# Training, validation, and test set

When we are fitting many algorithms, we often use the test/validation set performance to choose the best one

This means that our evaluations are no longer independent of our "final" algorithm

In practice, people will often split their data three ways into **training** (~60%), **validation** (~20%) and **test** (~20%) sets

For this course, we will just use a training and test set



# How to split?

Your test set should resemble the data that you will be applying your algorithm to

UTAH

# How to split? Random split

Your test set should resemble the data that you will be applying your algorithm to

If you will be applying your algorithm to similar but **equivalent** people/units, then you should use a **random split** (i.e., a random set of 70% of the data are the training set and the other 30% of the data are the test set)

# 



# How to split? Random split

Your test set should resemble the data that you will be applying your algorithm to

If you will be applying your algorithm to similar but **equivalent** people/units, then you should use a **random split** (i.e., a random set of 70% of the data are the training set and the other 30% of the data are the test set)

# 



# How to split? Grouped split

Your test set should resemble the data that you will be applying your algorithm to

If your data comes from a collection of hospitals and you will be applying your algorithm to **new hospitals**, you should use a **grouped split** (e.g., 70% of the *hospitals* are the training set, and 30% are the test set)



# How to split? Grouped split

Your test set should resemble the data that you will be applying your algorithm to

If your data comes from a collection of hospitals and you will be applying your algorithm to **new hospitals**, you should use a **grouped split** (e.g., 70% of the *hospitals* are the training set, and 30% are the test set)



# How to split? Time-based split

Your test set should resemble the data that you will be applying your algorithm to

If you will be applying your algorithm to the same people/units, but in the **future**, you should use a **time-based split** (i.e., the earliest 70% of the data is the training set and the final 30% of the data are the test set)



# How to split? Time-based split

Your test set should resemble the data that you will be applying your algorithm to

If you will be applying your algorithm to the same people/units, but in the **future**, you should use a **time-based split** (i.e., the earliest 70% of the data is the training set and the final 30% of the data are the test set)



## **Quantifying predictive performance (continuous)**

Test set predictions:



Measures of predictive performance for <u>continuous</u> responses



### Visualizing predictive performance (continuous)

