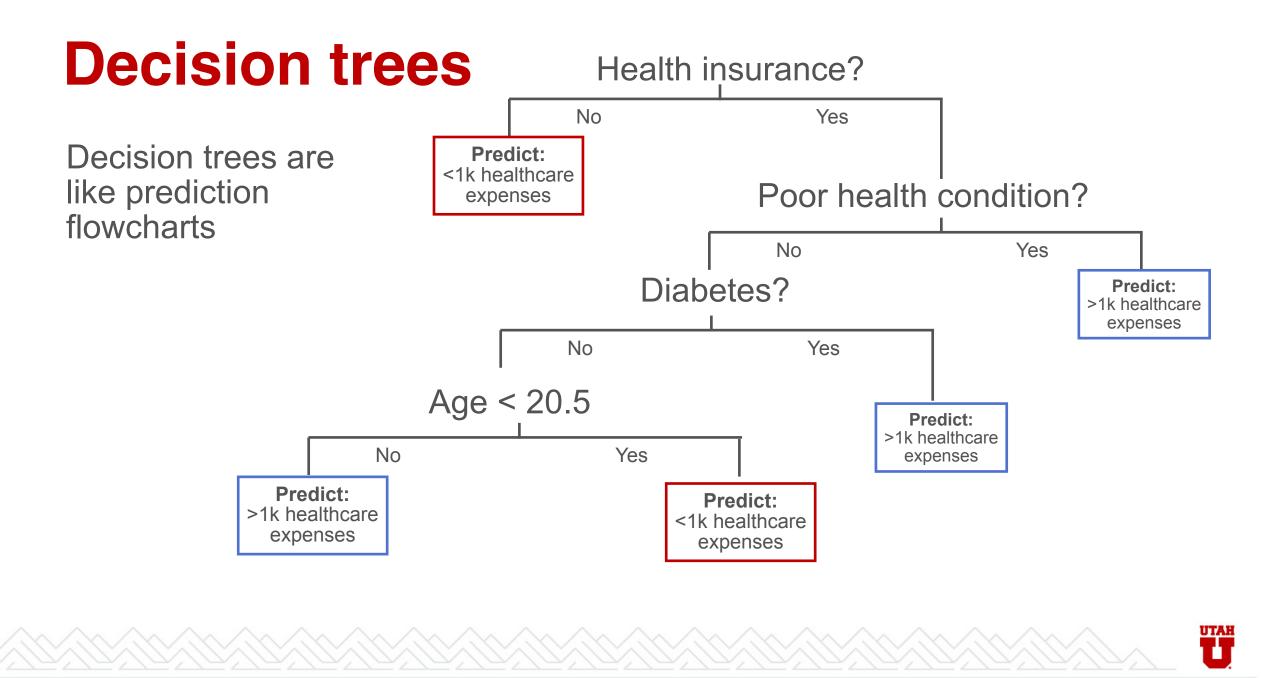
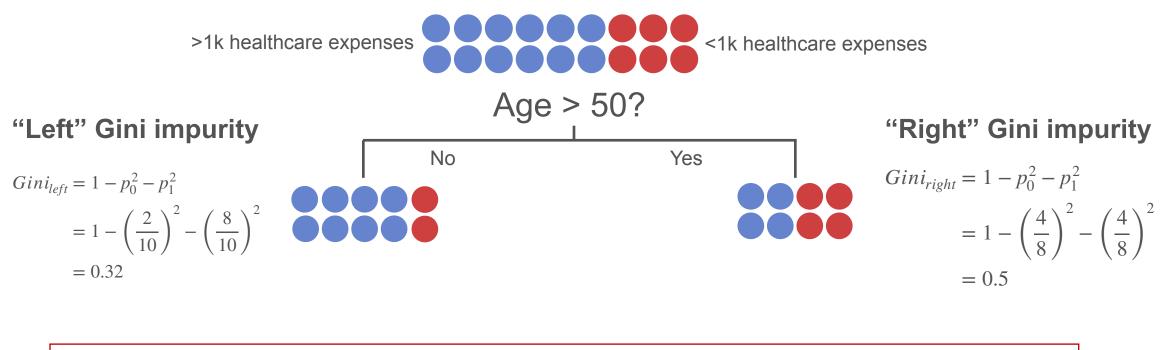
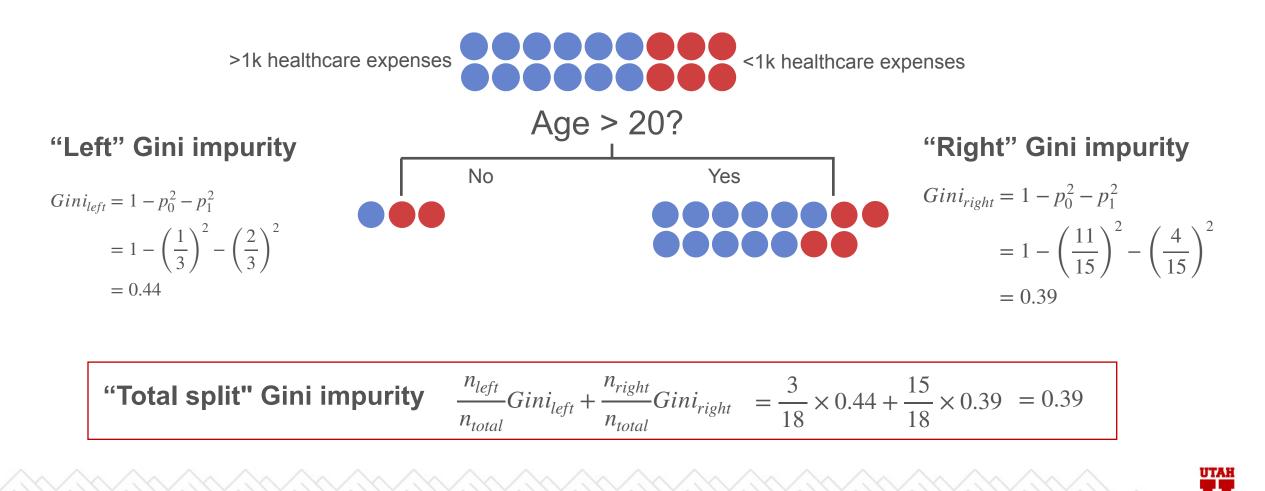
Decision Trees

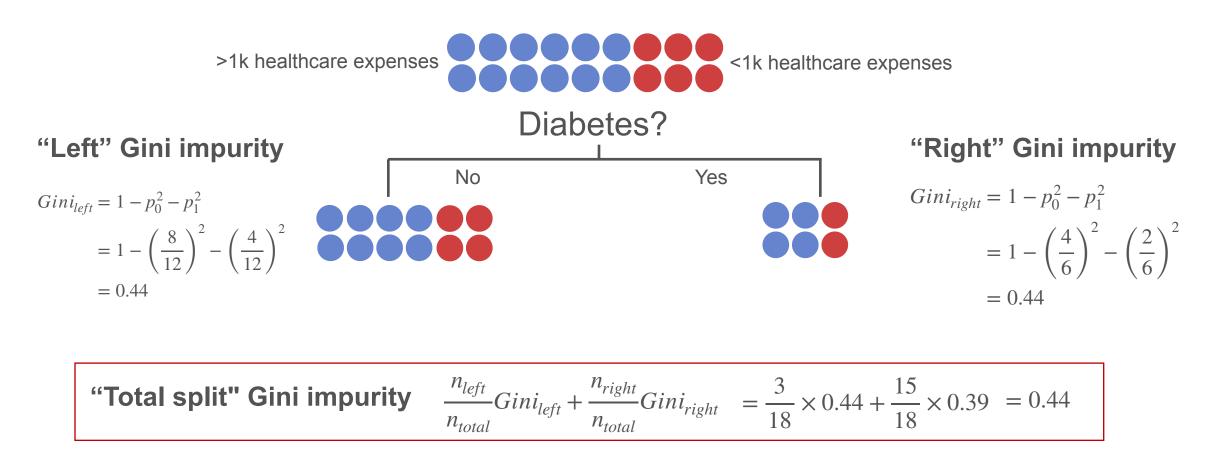
Dr Rebecca Barter

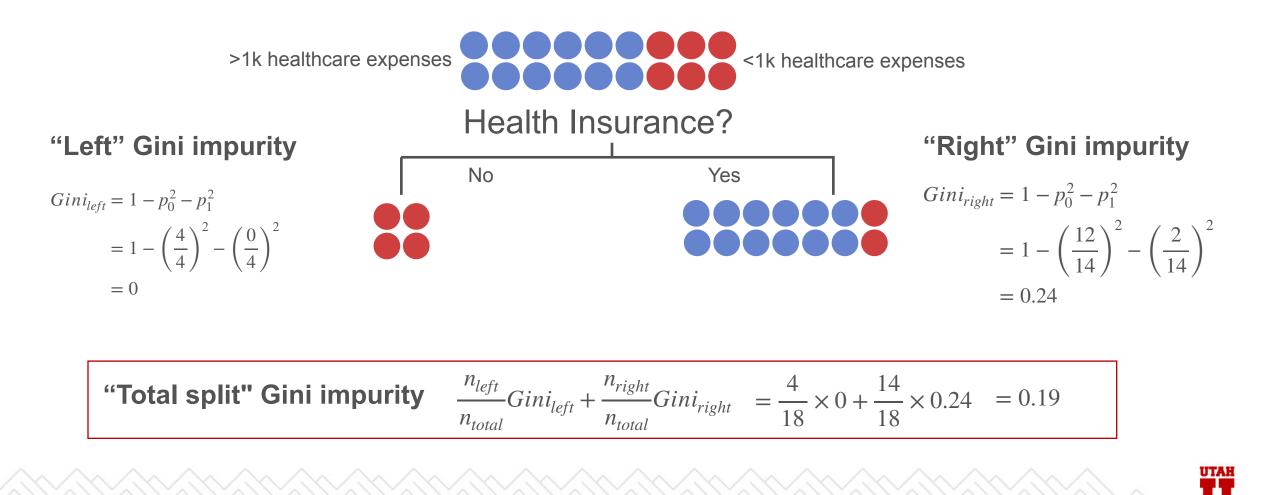




"Total split" Gini impurity $\frac{n_{left}}{n_{total}}Gini_{left} + \frac{n_{right}}{n_{total}}Gini_{right} = \frac{10}{18} \times 0.32 + \frac{8}{18} \times 0.5 = 0.4$



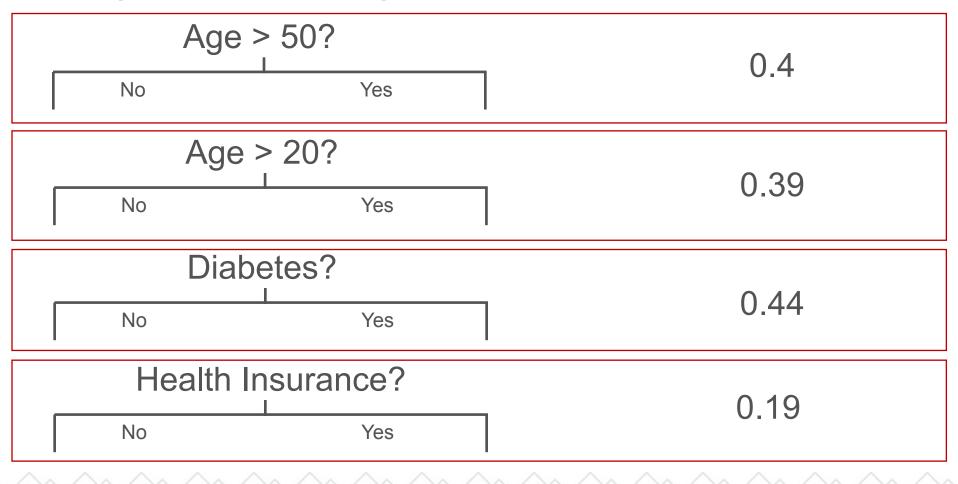




Training a decision tree with the CART algorithm

Options for the first split

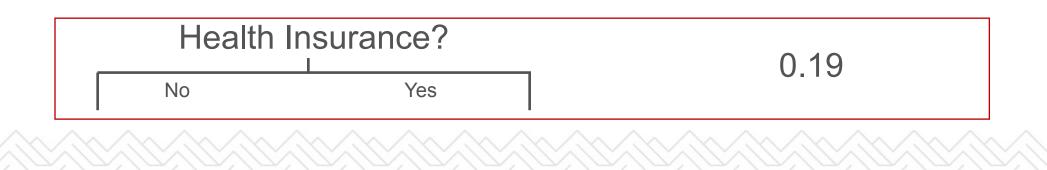
Gini impurity



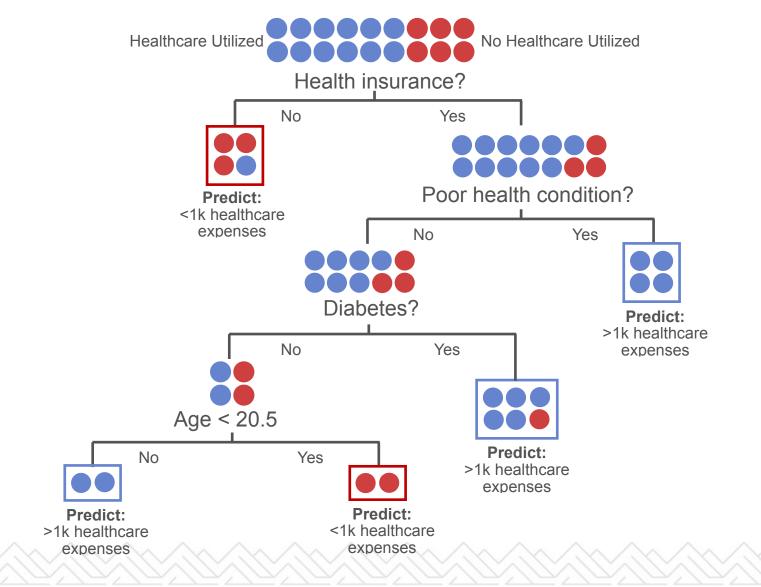
Training a decision tree with the CART algorithm

Options for the first split

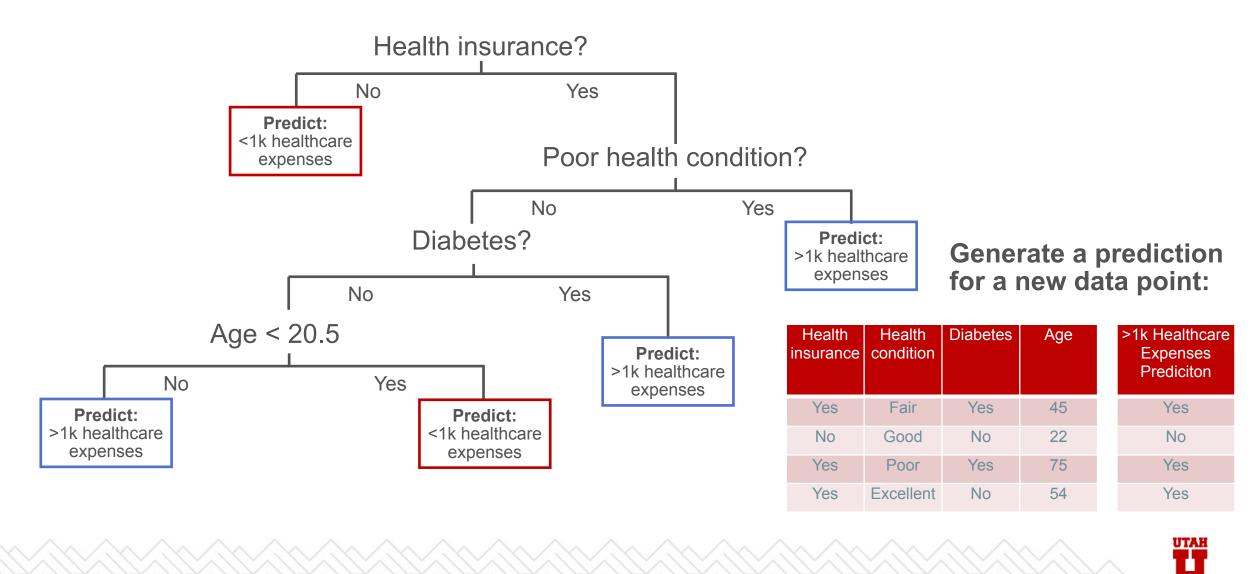
Gini impurity



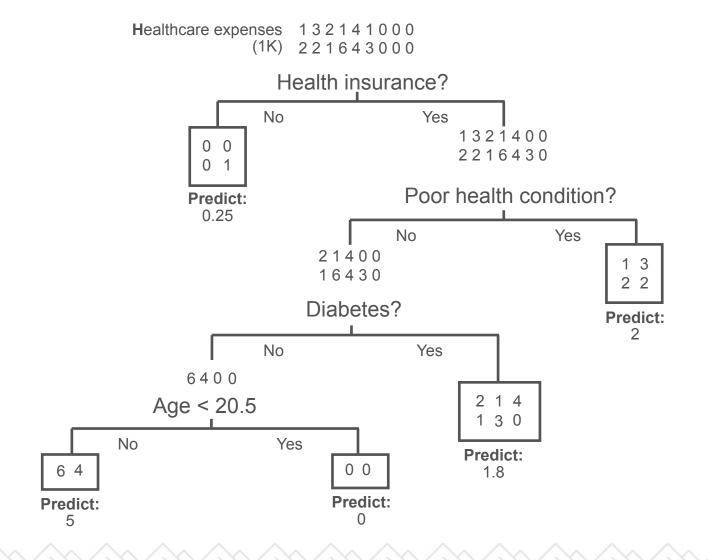
CART Predictions for binary responses



CART Predictions for binary responses



CART Predictions for cont. responses



Random Forest

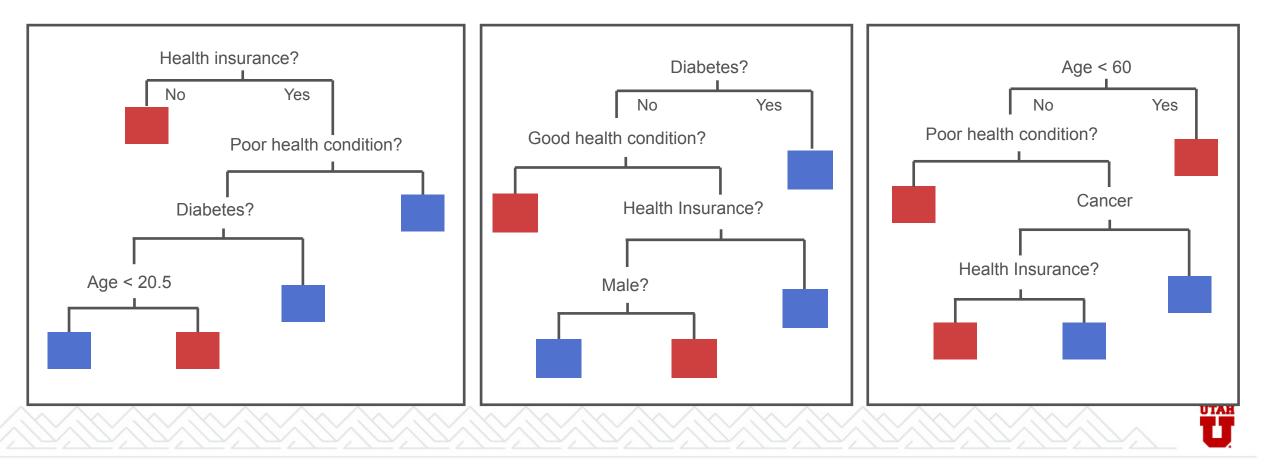
Dr Rebecca Barter

Training a Random Forest (RF) algorithm

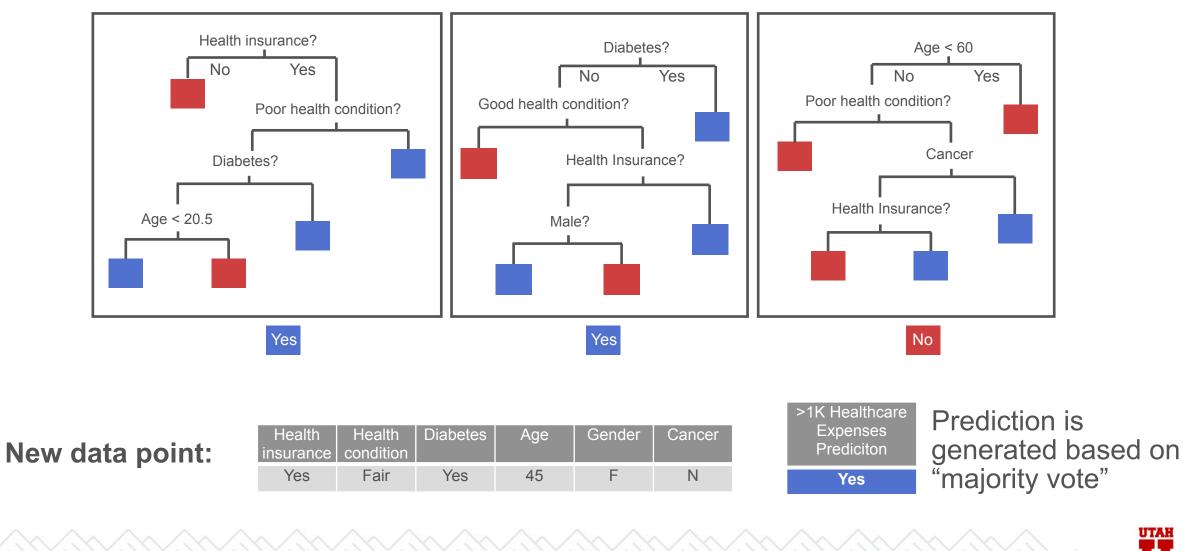
Train multiple different trees "in parallel"/"independently"

(a) Each **tree** is based on a different random sample of the training data

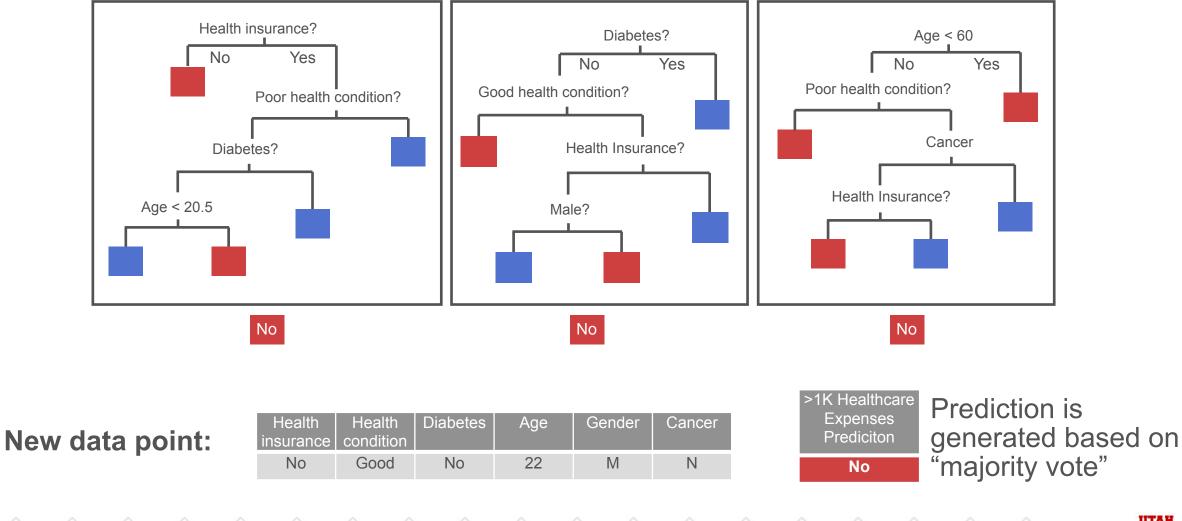
(b) Each **split** considers a different subset of features



Predictions from RF algorithm

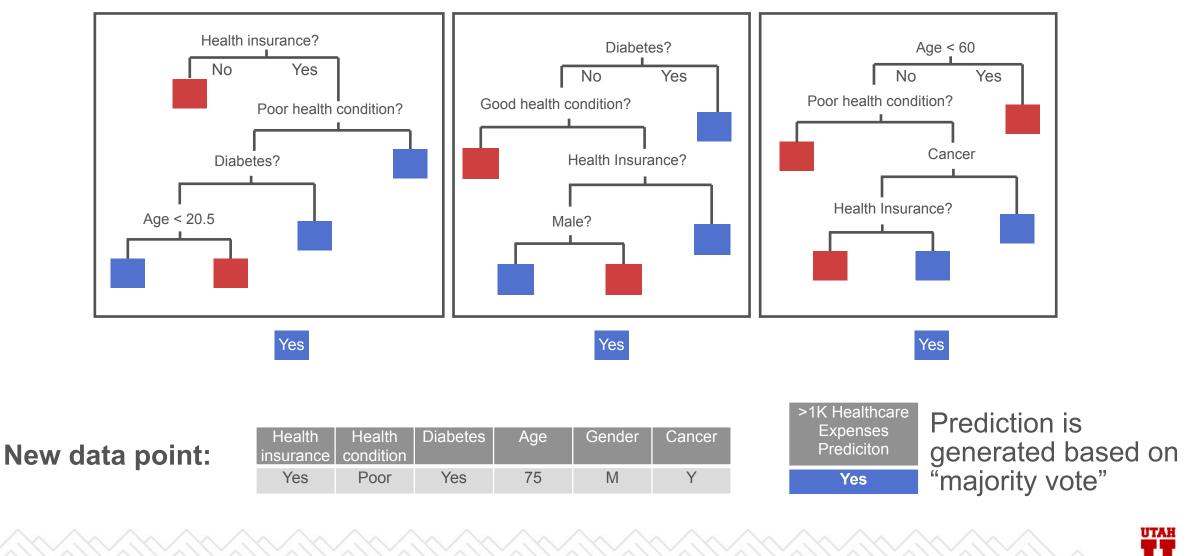


Predictions from RF algorithm



UTAH

Predictions from RF algorithm



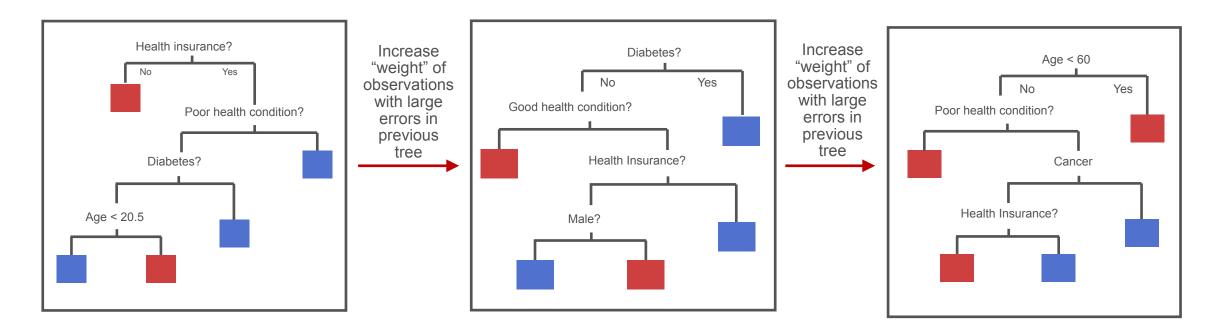
XGBoost (Extreme Gradient Boosting)

Dr Rebecca Barter

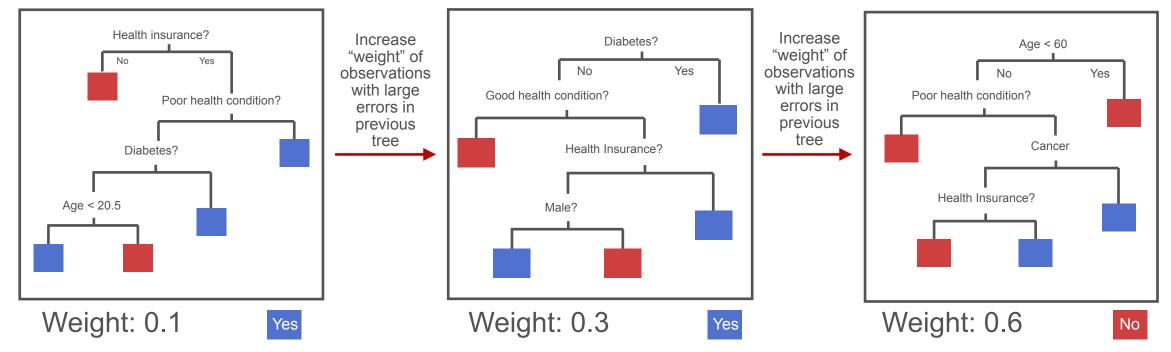
Training an XGBoost algorithm

Train multiple different trees "sequentially"

Each tree is trained to reduce the errors made by the previous trees by placing greater "penalties" on prediction errors for observations with larger prior errors



Predictions from XGBoost algorithm



Prediction = $0.1 \times 1 + 0.3 \times 1 + 0.6 \times 0 = 0.4 < 0.5$

New data point:		condition		Age	Gender	Cancer	>1K Healthcare Expenses Prediciton	Prediction is generated based on <u>weighted</u>	
	No	Good	No	22	Μ	N	No	"majority vote"	
					A . A		A. A. A.	UTAH	

Variable importance

Dr Rebecca Barter

Variable importance for linear models

Variable importance for linear models can be determined from the coefficients, but **coefficients of a linear model are** *not* **automatically comparable**

Continuous response linear regression

hlthx = -6.59 + 0.07 age - 0.13 sex + 0.03 weight + 1.43 diabetes

Binary response logistic regression

 $P(\widehat{hlthx1k}) = \frac{e^{-159.4 + 3.2age - 1.2sex + 0.2weight + 4.8diabetes}}{1 + e^{-159.4 + 3.2age - 1.2sex + 0.2weight + 4.8diabetes}}$

To determine feature importance from a linear model, you must either

(a) Normalize/standardize each variable before fitting the linear model

(b) Look at the **theoretical standardized coefficients**

Variable importance for RF and XGBoost

There are two metrics for variable importance for RF and XGBoost models

Permutation importance

How much does the prediction accuracy decrease when you re-train the algorithm after randomly scramble (permute) the values of each variable one at a time?

Gini/Variance ("gain") importance

How much does the Gini impurity (binary) or variance (continuous) decrease across each split involving the variable, averaged over all trees in the forest?

