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Training a decision tree with the CART algorithm

Age > 50?

>1k healthcare expenses <1k healthcare expenses

No Yes
“Left” Gini impurity

Ginileft = 1 − p2
0 − p2

1

= 1 − ( 2
10 )

2

− ( 8
10 )

2

= 0.32

Giniright = 1 − p2
0 − p2

1

= 1 − ( 4
8 )

2

− ( 4
8 )

2

= 0.5

“Total split" Gini impurity nleft

ntotal
Ginileft +

nright

ntotal
Giniright =

10
18

× 0.32 +
8
18

× 0.5 = 0.4

“Right” Gini impurity

(CART = Classification and Regression Tree)



Training a decision tree with the CART algorithm
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Training a decision tree with the CART algorithm
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Training a decision tree with the CART algorithm
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Training a decision tree with the CART algorithm
Options for the first split Gini impurity

Age > 50?
No Yes

0.4

Age > 20?
No Yes

0.39

Diabetes?
No Yes 0.44

    Health Insurance?
No Yes

0.19



Training a decision tree with the CART algorithm
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CART Predictions for binary responses
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CART Predictions for cont. responses
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Training a Random Forest (RF) algorithm
Train multiple different trees “in parallel”/“independently”
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(a) Each tree is based on a different random 
sample of the training data

(b) Each split considers a different subset of 
features



Predictions from RF algorithm
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Predictions from RF algorithm
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Predictions from RF algorithm
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XGBoost  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Training an XGBoost algorithm
Train multiple different trees “sequentially”
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Each tree is trained to reduce the errors made by the previous trees by placing greater “penalties” on 
prediction errors for observations with larger prior errors
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Predictions from XGBoost algorithm
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Variable importance for linear models

To determine feature importance from a linear model, you must either

(a) Normalize/standardize each variable before fitting the linear model

(b) Look at the theoretical standardized coefficients

̂hlthx = − 6.59 + 0.07 age − 0.13 sex + 0.03 weight + 1.43 diabetes
Continuous response linear regression

̂P(hlthx1k) =
e−159.4 + 3.2age − 1.2sex + 0.2weight + 4.8diabetes

1 + e−159.4 + 3.2age − 1.2sex + 0.2weight + 4.8diabetes

Binary response logistic regression

Variable importance for linear models can be determined from the coefficients, 
but coefficients of a linear model are not automatically comparable



Variable importance for RF and XGBoost
There are two metrics for variable importance for RF and XGBoost models

Permutation importance

How much does the prediction accuracy decrease when you re-train the algorithm after 
randomly scramble (permute) the values of each variable one at a time?

Gini/Variance (“gain”) importance

How much does the Gini impurity (binary) or variance (continuous) decrease across each 
split involving the variable, averaged over all trees in the forest?


