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Training a decision tree with the CART algorithm
(CART = Classification and Regression Tree)
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Training a decision tree with the CART algorithm
(CART = Classification and Regression Tree)
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Training a decision tree with the CART algorithm
(CART = Classification and Regression Tree)
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Training a decision tree with the CART algorithm
(CART = Classification and Regression Tree)
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Options for the first split Gini impurity
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Training a decision tree with the CART algorithm
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CART Predictions for binary responses
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CART Predictions for binary responses
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CART Predictions for cont. responses
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Training a Random Forest (RF) algorithm

Train multiple different trees “in parallel’/“independently”

(a) Each tree is based on a different random

(b) Each split considers a different subset of

sample of the training data features
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Predictions from RF algorithm
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Predictions from RF algorithm
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Predictions from RF algorithm
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XGBoost
(Extreme Gradient Boosting)
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Training an XGBoost algorithm

Train multiple different trees “sequentially”

Each tree is trained to reduce the errors made by the previous trees by placing greater “penalties” on

prediction errors for observations with larger prior errors
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Predictions from XGBoost algorithm
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Variable importance
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Variable importance for linear models

Variable importance for linear models can be determined from the coefficients,
but coefficients of a linear model are not automatically comparable

Continuous response linear regression

—_—

hithx = — 6.59 + 0.07 age — 0.13 sex + 0.03 weight + 1.43 diabetes

Binary response logistic regression
—159.4 + 3.2age — 1.2sex + 0.2weight + 4.8diabetes

P(hithx1k) =

1+ e—159.4 + 3.2age — 1.25ex + 0.2weight + 4.8diabetes

To determine feature importance from a linear model, you must either

(a) Normalize/standardize each variable before fitting the linear model

(b) Look at the theoretical standardized coefficients



Variable importance for RF and XGBoost

There are two metrics for variable importance for RF and XGBoost models

Permutation importance

How much does the prediction accuracy decrease when you re-train the algorithm after
randomly scramble (permute) the values of each variable one at a time?

Gini/Variance (“gain”) importance

How much does the Gini impurity (binary) or variance (continuous) decrease across each
split involving the variable, averaged over all trees in the forest?



