
Hyperparameter tuning and
Cross Validation

Dr Rebecca Barter

Hyperparameters
RF

Number of trees in the forest Number of variables to consider at each split

XGBoost

Optimizing “tuning” these hyperparameters can lead to improved performance

Max “depth” (# splits) of each tree Learning rate (how aggressively the algorithm
updates for each iteration)

Min “loss” reduction

Min observation in terminal “leaf” nodes

Number of variables to consider at each split

Hyperparameter default values
RF

Number of trees in the forest Number of variables to consider at each split

XGBoost
Max “depth” (# splits) of each tree

Min observation in terminal “leaf” nodes

Learning rate (how aggressively the algorithm
updates for each iteration

Min “loss” reduction Number of variables to consider at each split

[500]

[6]

[0]

[0.3]

[all]

[5 cont; 10 binary]

[]# cols

Optimizing “tuning” these hyperparameters can lead to improved performance

Using cross validation to tune hyperparameters

Idea: Train each algorithm many times using different hyperparameter value
combinations and compare performance (on validation set)

Issue: Validation set used to train our algorithm—no longer independent!

Remedy: Use Cross Validation on the training set to determine optimal
hyperparameter values

V-fold Cross Validation (CV)
1. Split the training data into V equal-sized non-overlapping subsets/“folds”
2. Withhold the first fold (to be “pseudo-validation” set)
3. Train algorithm on remaining V-1 folds
4. Use withheld fold to evaluate algorithm
5. Replace withheld fold, and repeat using the other V-1 folds as the withheld pseudo

validation set.

Choose the combination of hyperparameters that have the
highest best CV predictive performance (e.g., AUC/rMSE)

Tuning hyperparameters

For each hyperparameter combination, compute the average
5-fold CV or 10-fold CV error/accuracy (e.g., AUC for binary
problems, rMSE for continuous problems).

Create a grid of plausible hyperparameter combinations

mtry (# vars to consider at each split): 4, 8, 12

depth (max # of splits): 5, 10

n_trees (# of trees in forest): 250, 500

Comb. mtry depth n_trees

1 4 5 250

2 4 5 500

3 4 10 250

4 4 10 500

5 8 5 250

6 8 5 500

7 8 10 250

8 8 10 500

9 12 5 250

10 12 5 500

11 12 10 250

12 12 10 500

AUC

0.65

0.67

0.62

0.63

0.71

0.73

0.68

0.67

0.70

0.71

0.69

0.67

