Introduction to Python for Data Analysis

University of Utah

Date: February 8-9 2024

Time: 9:00 am – 4:00 pm MDT

Location: HELIX Rm - GS155 - Alder

Instructors: Rebecca Barter, Alec Chapman

Registration: Use the following link to sign up for this workshop.

Sign up for the DELPHI mailing list to stay in the loop about future workshops and funding opportunities.

General Information

What: This workshop will introduce the basics of the Python programming language for data science, with a focus on working with tabular data using the Pandas library.

Who: The course is aimed at graduate students, postdocs, faculty, and other researchers across campus who are interested in learning how to use Python for data analysis. You don’t need to have coding experience or any previous knowledge of Python to attend this workshop.

Requirements: Participants must bring a laptop on which they can access the internet via a web browser. We will be using Google Colab notebooks throughout this workshop.

Contact: Please email penny.atkins@hsc.utah.edu or rebecca.barter@hsc.utah.edu for more information.

Schedule

Day 1

Time Topic Incomplete notebook Complete notebook
9:00 Introduction and Setup
9:30 Variables 01_variables 01_variables_complete
10:00 Types 02_types 02_types_complete
10:30 Morning Break
11:00 Type conversions 03_type_conversions 03_type_conversions_complete
11:30 Boolean operations 04_boolean_operations 04_boolean_operations_complete
12:00 Lunch
1:00 The numpy library 05_numpy 05_numpy_complete
1:45 The pandas library 06_pandas_dataframes 06_pandas_dataframes_complete
2:30 Afternoon Break
3:00 Data frame indexes 07_index 07_index_complete
3:30 Pandas series 08_series 08_series_complete
4:00 End

Day 2

Time Topic Incomplete notebook Complete notebook
9:00 Subsetting with [] and .loc 09_subsetting 09_subsetting_complete
9:45 Filtering rows using logical conditioning 10_filtering_logical 10_filtering_logical_complete
10:00 Filtering rows using .query 11_filtering_query 11_filtering_query_complete
10:15 Positional indexing with .iloc 12_iloc 12_iloc_complete
10:30 Morning Break
11:00 Adding and dropping columns from DataFrames 13_modifying_dataframes 13_modifying_dataframes_complete
11:30 Computing summaries of DataFrames 14_summarizing_dataframes 14_summarizing_dataframes_complete
12:00 Lunch
1:00 Grouped computations 15_grouped_computations 15_grouped_computations_complete
1:30 Data visualization 16_visualization 16_visualization_complete
2:30 Afternoon Break
3:00 Lists and iteration 17_list_comprehension 17_list_comprehension_complete
4:00 End